Cusabio Human Recombinants
Recombinant Human Tumor necrosis factor receptor superfamily member 21 (TNFRSF21), partial | CSB-EP023979HU
- SKU:
- CSB-EP023979HU
- Availability:
- 13 - 23 Working Days
Description
Recombinant Human Tumor necrosis factor receptor superfamily member 21 (TNFRSF21), partial | CSB-EP023979HU | Cusabio
Alternative Name(s): Death receptor 6; CD358
Gene Names: TNFRSF21
Research Areas: Cell Biology
Organism: Homo sapiens (Human)
AA Sequence: RKSSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIYQFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRGLMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLLRCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQAEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL
Source: E.coli
Tag Info: N-terminal 6xHis-SUMO-tagged
Expression Region: 371-655aa
Sequence Info: Cytoplasmic Domain
MW: 48 kDa
Purity: Greater than 90% as determined by SDS-PAGE.
Relevance: Promotes apoptosis, possibly via a pathway that involves the activation of NF-kappa-B. Can also promote apoptosis mediated by BAX and by the release of cytochrome c from the mitochondria into the cytoplasm. Plays a role in neuronal apoptosis, including apoptosis in response to amyloid peptides derived from APP, and is required for both normal cell body death and axonal pruning. Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP). N-APP binds TNFRSF21; this triggers caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). Negatively regulates oligodendrocyte survival, maturation and myelination. Plays a role in signaling cascades triggered by stimulation of T-cell receptors, in the adaptive immune response and in the regulation of T-cell differentiation and proliferation. Negatively regulates T-cell responses and the release of cytokines such as IL4, IL5, IL10, IL13 and IFNG by Th2 cells. Negatively regulates the production of IgG, IgM and IgM in response to antigens. May inhibit the activation of JNK in response to T-cell stimulation.
Reference: Identification and functional characterization of DR6, a novel death domain-containing TNF receptor.Pan G., Bauer J.H., Haridas V., Wang S., Liu D., Yu G., Vincenz C., Aggarwal B.B., Ni J., Dixit V.M.FEBS Lett. 431:351-356(1998)
Storage: The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself. Generally, the shelf life of liquid form is 6 months at -20?/-80?. The shelf life of lyophilized form is 12 months at -20?/-80?.
Notes: Repeated freezing and thawing is not recommended. Store working aliquots at 4? for up to one week.
Function: Promotes apoptosis, possibly via a pathway that involves the activation of NF-kappa-B. Can also promote apoptosis mediated by BAX and by the release of cytochrome c from the mitochondria into the cytoplasm. Plays a role in neuronal apoptosis, including apoptosis in response to amyloid peptides derived from APP, and is required for both normal cell body death and axonal pruning. Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP). N-APP binds TNFRSF21; this triggers caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). Negatively regulates oligodendrocyte survival, maturation and myelination. Plays a role in signaling cascades triggered by stimulation of T-cell receptors, in the adaptive immune response and in the regulation of T-cell differentiation and proliferation. Negatively regulates T-cell responses and the release of cytokines such as IL4, IL5, IL10, IL13 and IFNG by Th2 cells. Negatively regulates the production of IgG, IgM and IgM in response to antigens. May inhibit the activation of JNK in response to T-cell stimulation.
Involvement in disease:
Subcellular Location: Cell membrane, Single-pass type I membrane protein
Protein Families:
Tissue Specificity: Detected in fetal spinal cord and in brain neurons, with higher levels in brain from Alzheimer disease patients (at protein level). Highly expressed in heart, brain, placenta, pancreas, lymph node, thymus and prostate. Detected at lower levels in lung, skeletal muscle, kidney, testis, uterus, small intestine, colon, spleen, bone marrow and fetal liver. Very low levels were found in adult liver and peripheral blood leukocytes.
Paythway:
Form: Liquid or Lyophilized powder
Buffer: If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution: We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20?/-80?. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Uniprot ID: O75509
HGNC Database Link: HGNC
UniGene Database Link: UniGene
KEGG Database Link: KEGG
STRING Database Link: STRING
OMIM Database Link: OMIM